References


  1. Forsberg, C., P. F. Peterson, and P. S. Pickard. 2003. “Molten-Salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity.” Nuclear Technology 144(3): 289–302.
  2. Ingersoll, D. T., C. W. Forsberg, and P. E. MacDonald. Trade Studies for the Liquid-Salt-Cooled Very High-Temperature Reactor: Fiscal Year 2006 Progress Report, ORNL/TM-2006/140, ORNL, Oak Ridge, TN, February 2007.
  3. Peterson, P. F., and H. Zhao. 2006. “A Flexible Base-Line Design for the Advanced High-Temperature Reactor Utilizing Metallic Reactor Internals (AHTR-MI).” June 8–9, Reno, NV: Proceedings of the International Conference on Advances in Nuclear Power Plants (ICAPP 06).
  4. Fei, T., D. Ogata, K. Pham, M. Solom, C. Zhao, C. Xu, A. Cheng, et al. 2008. A Modular Pebble-Bed Advanced High Temperature Reactor. Berkeley: University of California, Berkeley.
  5. S. R. Greene, et al., “Pre-Conceptual Design of a Fluoride- Salt-Cooled Small Modular Advanced High-Temperature Reactor (SmAHTR), Oak Ridge National Laboratory, ORNL/TM-2010/199, Fig. 8-1, p. 8-2, December 2010.
  6. D. E. Holcomb, F. J. Peretz, and A. L. Qualls, Advanced High Temperature Reactor Systems and Economics Analysis, ORNL/TM-2011/364, ORNL, Oak Ridge, TN, September 2011.
  7. V. K. Varma, D. E. Holcomb, F. J. Peretz, E. C. Bradley, D. Ilas, A. L. Qualls, and N. M. Zaharia, AHTR Mechanical, Structural, and Neutronic Preconceptual Design, ORNL/TM-2012/320, ORNL, Oak Ridge, TN, September 2012.
  8. H. G. MacPherson, “The Molten Salt Reactor Adventure,” Nuclear Science and Engineering, Vol. 90, pp. 374-380 (1985).
  9. Sea Hong, Diasuke Kazama, Huu Duy Nguyen, and Jaben Root, “NE-170 Physical arrangement and structural design for the Mk1 PB-FHR reactor building,” Department of
    Nuclear Engineering, U.C. Berkeley, Report UCBTH-14-003, 2014.
  10. IAEA, “Construction Technologies for Nuclear Power Plants,” International Atomic Energy Agency, Nuclear Energy Series No. NP-T-2.5, Vienna, 2011.
  11. IAEA, 2011, ibid, pg. 17.
  12. Southern Nuclear Operating Company, “Early Site Permit Application: Part 3 – Environmental Report,” Chapter 3, U.S. Nuclear Regulatory Commission Assension Number ML062290302, Table 3.0-1.
  13. S. Hong, D. Kazama, H. D. Nguyen, and J. Root, “NE-170 Physical arrangement and structural design for the Mk1 PB-FHR reactor building,” Department of Nuclear Engineering, U.C. Berkeley, Report UCBTH-14-003, 2014.
  14. http://www.flickr.com/photos/scegnews/sets/72157629244341909/, accessed Oct. 13, 2013.
  15. S. Hong, et al., 2014, ibid.
  16. IAEA, 2011, ibid, pg. 45,
  17. IAEA, 2011, ibid, pg. 147.
  18. Hong et al., 2014, ibid.
  19. Hong et al., 2014, ibid.
  20. R.H. Bryan and I.T. Dudley, “Estimated Quantities of Materials Contained in a 1000-MW(e) PWR Power Plant,” Oak Ridge National Laboratory, ORNL-TM-4515, 1974.
  21. S. Kaplan, Memorandum to Senator John McCain, “Concrete and Steel Requirements for Power Plants,” Congressional Research Service, Table 1, Nov. 27, 2007.
  22. Per F. Peterson, Haihua Zhao, and Robert Petroski, “Metal And Concrete Inputs For Several Nuclear Power Plants,” Report UCBTH-05-001, UC Berkeley, February 4, 2005.
  23. P.J. Meier, “Life-Cycle Assessment of Electricity Generation Systems and Applications for Climate Change Policy Analysis,” U. Wisconsin, Report UWFDM-1181, August, 2002.
  24. S. Pacca and A. Horvath, Environ. Sci. Technol., 36, 3194-3200 (2002).
  25. G. Cao, et al., “Fluoride-Salt-Cooled High Temperature Reactor (FHR) Materials, Fuels and Components, White Paper,” Department of Nuclear Engineering, U.C. Berkeley, Report UCBTH-12-003, July, 2013.
  26. C.E. Boardman, et al., “A Description of the S-PRISM Plant,” Proceedings of ICONE 8, 8th International Conference on Nuclear Engineering, Baltimore, MD, Fig. 5, April 2-6, 2000.
  27. World Nuclear News, “Triso fuel triumphs at extreme temperatures,” Sept. 26, 2013.
    http://www.world-nuclear-news.org/ENF-Triso_fuel_triumphs_at_extreme_temperatures-2609137.html
  28. C. Andreades, R.O. Scarlat, L. Dempsey, and P.F. Peterson, “Reheat Air-Brayton Combined Cycle (RACC) Power Conversion Design and Performance Under Nominal Ambient Conditions,” ASME Journal of Engineering for Gas Turbines and Power, vol. 136, No. 6, doi:10.1115/1.4026506 (2014).
  29. C. Andreades, L. Dempsey, and P.F. Peterson, “Reheat Air-Brayton Combined Cycle (RACC) Power Conversion Off-Nominal and Transient Performance,” ASME Journal of Engineering for Gas Turbines and Power, vol. 136, No. 7, doi:10.1115/1.4026612 (2014).
  30. P. Bardet and P.F. Peterson, “Options for Scaled Experiments for High Temperature Liquid Salt and Helium Fluid Mechanics and Convective Heat Transfer,” Nuclear Technology, Vol. 163, pp. 344 – 357, 2008.